Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control

Rozwiązując zadanie sterowania układu, automatyk powinien przede wszystkim sporządzić odpowiedni jego opis. Chcąc np. automatycznie sterować piecem szuka często matematycznego modelu zjawisk zachodzących w tym obiekcie, tzn. takiego układu zależności, którego rozwiązanie dawałoby wyniki lub prognozy zgodne z obserwacjami. Gdy rozważamy własności statyczne i dynamiczne obiektu, to okaże się, że posiada on określoną wielkość wejściową i wyjściową i może być scharakteryzowany transmitancją operatorową, odzwierciedlającą jego pełną charakterystykę dynamiczną.

Proces identyfikowania obiektu powinien więc polegać w praktyce na obserwacji zmian sygnału wyjściowego, który jest odpowiedzią obiektu na wymuszenie np. funkcją skokową podaną na jego wejście. Otrzymany w ten sposób model wystarcza w praktyce do opracowania układu sterowania automatycznego i wyznaczenia nastaw regulatora znajdującego się pętli z badanym obiektem.

SIEMENS posiada w swojej ofercie pakiet programowy Standard PID Control, który oprócz zadań regulacji ciągłej, impulsowej, krokowej daje dodatkowo użytkownikowi możliwość zidentyfikowania obiektu i optymalizacji nastaw regulatora. Oprogramowanie to składa się z dwóch części:

- Standard PID Tool programu umożliwiającego konfigurację parametrów regulatora PID, testowanie układu regulacji dzięki podglądowi pętli regulacyjnej i możliwości wykreślania przebiegów sygnałów ON-LINE, identyfikację obiektu, wyznaczenie nastaw regulatora dla warunku bez przeregulowania lub z przeregulowaniem,
- Standard PID Control FB zbioru bloków funkcyjnych i funkcji realizujących algorytm ciągły PID, krokowy PID oraz czasowe wywołanie wskazanej pętli regulacji.

Chcąc w miarę dokładnie opisać możliwości tego oprogramowania postawiliśmy sobie zadanie optymalizacji nastaw regulatora PI i identyfikacji pewnego obiektu cieplnego opisanego transmitancją operatorową (jego odpowiedź na wymuszenie skokowe została przedstawiona na rysunku 6):

$$G(s) = \frac{0.8 \bullet e^{-3s}}{40s^2 + 15s + 1}$$

Model tego obiektu został zbudowany w środowisku MATLAB/SIMULINK w PC dzięki czemu może on działać w czasie rzeczywistym i dawać dokładnie takie same sygnały jak fizyczny obiekt (szerzej możliwość ta została opisana w artykule: "Połączenie regulatora PID w sterowniku SIMATIC z modelem obiektu w MATLAB/SIMULINK" - http://www.plcs.pl/publikacje.php).

Obiekt ten, podobnie jak obiekt fizyczny należy połączyć ze sterownikiem PLC np. S7-314IFM, w którym znajduje się prosty program składający się tylko z trzech bloków:

- odpowiedniego bloku organizacyjnego, w którym następuje wywołanie bloków FB1 i DB1,
- FB1 bloku funkcyjnego realizującego algorytm regulacji ciągłej Standard PID,
- DB1 bloku danych zawierającego informacje potrzebne do działania regulatora.

Program ten składa się tylko z jednej instrukcji w odpowiednim bloku organizacyjnym : *CALL FB1, DB1*. Przy czym FB1 musi być pobrany z biblioteki StdCon (V5), a blok danych jest tworzony automatycznie przez STEP 7 oszczędzając użytkownikowi czas na wypełnianie poszczególnych jego składowych.

Dodatkowo należy określić w odpowiednim bloku organizacyjnym: czas próbkowania (CYCLE), zmienną (SP_INT), która jest wartością zadaną, sygnał wyjściowy z obiektu

(PV_PER),	sygnał	wyjściowy	Z	regulatora	(LMN_P	ER)	oraz	sygnał	(COM_RST)		
odpowiedzialny za restart regulatora.											
CALL FB 1	. DB1	,	Tak	stworzony	nrogram	zostai	e prz	zesłany	do sterownika		

COM RST	:=M1 0
I SFI	:=
D SEL	:=
MAN ON	:=
CAS ON	:=
SELECT	:=
CYCLE	:=T#500MS
CYCLE P	:=
SP INT	:=0.000000e+000
SP_EXT	:=
PV IN	:=
PV PER	:=PEW128
GAĪN	:=
TI	:=
TD	:=
TM_LAG	:=
DISV	:=
CAS	:=
SP_HLM	:=
SP_LLM	:=
LMN_HLM	:=
LMN_LLM	:=
DB_NBR	:=
SPFC_NBR	:=
PVFC_NBR	:=
LMNFCNBR	:=
LMN	:=
LMN_PER	:=PAW128
SP	:=
PV	:=
QCAS	:=
QC_ACT	:=
QPOS_P	:=
QNEG_P	:=
MAN	:=

Tak stworzony program zostaje przesłany do sterownika i po przełączeniu w pozycję RUNP następuje jego aktywacja.

W następnym etapie należy skonfigurować regulator za pomocą programu Standard PID Control Parameter Assignment (rysunek 1).

Po jego uruchomieniu wywołujemy ON-LINE blok DB1, w którym musimy określić:

- wartość zadaną jako wewnętrzną, z generatora wartości zadanej, określonego przebiegu czasowego lub zewnętrzną odpowiednio znormalizowaną,
- wielkość wyjściową z obiektu jako wewnętrzną lub zewnętrzną czytaną z odpowiedniego modułu bipolarnego, unipolarnego lub odpowiedniego termoelementu,
- algorytm PID, w którym określamy: czy ma być brane pod uwagę zewnętrzne zakłócenie, rodzaj algorytmu (P, PI, PD, PID), wzmocnienie regulatora, stałą związaną czasem całkowania oraz stałą różniczkowania regulatora,
- rodzaj pracy: z zamkniętą automatyczną pętlą regulacyjną lub ręcznym zadawaniem wielkości sterującej,
- odpowiednie ograniczenie i dopasowanie sygnałów występujących w pętli regulacyjnej.

Rys. 1. Okno konfiguratora Standard PID.

Po odpowiednim skonfigurowaniu wszystkich wymienionych parametrów (rysunek 1) strukturę naszej pętli regulacyjnej należy zaktualizować w sterowniku podając na początek dowolne wartości nastaw P i I.

Cały proces identyfikacji i wyznaczania nastaw regulatora PI składa się dziewięciu kroków, a inicjowany jest poleceniem *Debug/Process Identification*... .

KROK 1. W kroku tym użytkownik musi wybrać sposób identyfikacji: w otwartej lub zamkniętej pętli regulacyjnej. Dokonuje tego przełączając odpowiednio sygnał sterujący (Maniulated Variable) z Controller na PG lub wartość zadaną (Sepoint) z Controller na PG w oknie podglądu pętli regulacyjnej (rysunek 3). Identyfikacja w otwartej pętli jest bardziej przydatna w przypadkach kiedy nie znamy tak naprawdę obiektu i chcemy aby program sam znalazł dla niego optymalne nastawy. Drugi ze sposobów zalecany jest wtedy kiedy znamy nastawy regulatora dla danego obiektu, a chcemy jedynie aby program je nieznacznie skorygował poprawiając tym samym jakość regulacji.

W naszym zadaniu wybieramy pierwszy ze sposobów ustawiając sygnał sterujący na początkowym poziomie 0%, a następnie zgodnie z zaleceniem w oknie dialogowym naciskamy przycisk Send w oknie podglądu pętli regulacyjnej. Ustawienie poziomu początkowego zależy tylko od stanu w jakim znajduje się obiekt.

KROK 2. Użytkownik określa tu zachowanie się obiektu, jak również całego procesu identyfikacji, tzn. czy zbieranie danych będzie wykonywane w sposób ręczny, czy też automatyczny (rysunek 2). Przebieg samego procesu tak naprawdę został już określony w kroku poprzednim i program sygnalizuje jedynie czy praca jest w trybie ręcznym (Manual), czy automatycznym (Automatic).

Prepare for Data Aquisition								
Operating Mode Manual								
Process Behavior								
Without integral action								
○ <u>W</u> ith integral action								
Manipulated Variable								
Minimum change: 1.5 %								
Process Variable								
Automatic recognition of final state								
OK Exit Help								

Rys. 2. Okno umożliwiające przygotowanie trybu pracy procesu identyfikacji.

KROK 3. Program prosi o ustawienie sygnału sterującego na poziomie punktu pracy (rysunek 3) i przesłanie nowych ustawień. Dla naszego zadania ustawiamy sygnał sterujący na poziomie 50%. Jednocześnie w tle uruchamia się okno dialogowe umożliwiające użytkownikowi "śledzenie" ON-LINE ważnych przebiegów sygnałów w pętli regulacyjnej (rysunek 4). Okno to można przed rozpoczęciem procesu identyfikacji odpowiednio przygotować dzięki poleceniu Settings. Do dyspozycji mamy możliwość wyświetlania jednocześnie do czterech przebiegów czasowych wybieranych z listy, zmianę koloru wyświetlania przebiegów, czas

próbkowania z jakim będą wyświetlane dane, długość osi czasowej oraz czas przez który dane pomiarowe mogą być zapisywane do wskazanego pliku.

DB1 Standard_PID\SIM	ATIC 300-S	tation\CPU314 IFM(1) - Loc	op Monitor
		PID Parameters	
		Proportional gain:	1.5030
100-	- 100%	Reset time:	1132073 ms
		Derivative time:	4075 ms
0-	- 0%	Setpoint ©Ontroller: 0.0000 ©PG: 0 Process Variable 0 ©Ontroller: 14.4097 ©PG: 0	Pos. limit alarm: Pos. limit warning:
100	4000	C Controller: 39.1710	Neg. limit warning:
-100-	-100%	• PG; 50	[%] Neg. limit
SP PV	LMN	- Actuating Signals- OUp ODow	alarm: V
(<u>S</u> end		Close	Help

Rys. 3. Okno podglądu pętli regulacyjnej.

- **KROK 4.** Użytkownik czeka aż sygnał z obiektu osiągnie ustabilizowaną wartość będącą odpowiedzią na skok sygnału sterującego, a następnie naciska OK.
- **KROK 5.** W kroku tym program prosi o podanie, w oknie podglądu pętli regulacyjnej, kolejnego skoku sygnału sterującego (rysunek 4).

Rys. 4. Okno podglądu sygnałów w pętli regulacyjnej.

- **KROK 6.** Program zbiera automatycznie ok. 130 punktów pomiarowych (wartość zadana, sygnał sterujący, sygnał wyjściowy z obiektu) przez pewien okres czasu zależny od zadanego czasu próbkowania (rysunek 4).
- KROK 7. Zamknięcie okna podglądu pętli regulacyjnej.
- **KROK 8.** Użytkownik ma możliwość w tym kroku wyboru: czy obliczone nastawy dla regulatora PI będą dawały efekt przeregulowania czy też nie.
- KROK 9. Program przedstawia wyniki obliczeń procesu identyfikacji (rysunek 5).

Result of Process In	dentification												
Process Parameters		PID/PI Parameters-											
Order:	2		PID	PI	Р								
Gain:	0.80	Proportional gain:	5.79	2.51	3.42 %								
Time constant:	8671 ms	Reset time:	17342	11561	ms								
Delay time:	7023 ms	Derivative time:	4335		ms								
Recovery time:	32084 ms				Result of Proces	s lo	entificatio	m					
Max. sample time	802 ms				- Process Parame	eters		_	– PID/PI Parameters –				
					Order:		2			PID	PI	Р	
Apply PID	Apply PI	Apply E		E <u>x</u> it	Gain:		0.80		Proportional gain:	3.48	1.50	1.41	%
					Time constant:		8736 m:	s	Reset time:	17473	11648		ms
					Delay time:		7076 m:	IS	Derivative time:	4368			ms
					Recovery time:		32325 m	IS					
					Max. sample tim	ŧ	808 m:	IS					
						_							
					Apply PID]	Apply P <u>I</u>	l	Apply <u>P</u>		E <u>x</u> it	He	lp

W wyniku obliczeń użytkownik dostaje do dyspozycji opis obiektu: rząd, wzmocnienie, stałą czasową i wynikające z niej opóźnienie i maksymalny czas próbkowania z jakim może działać regulatora PI.

Z danych tych wynika, że transmitancja naszego obiektu ma następującą postać:

Rys. 6. Porównanie obiektu rzeczywistego i otrzymanego w wyniku identyfikacji.

Jak widać na rysunku 6 charakterystyka skokowa obiektu otrzymanego w wyniku procesu identyfikacji "nieznacznie" odbiega od przebiegu obiektu rzeczywistego. Rozbieżności w początkowej części przebiegu są na tyle małe, że nie wpłyną na jakość regulacji. Dodatkowo Standard PID w końcowej fazie procesu identyfikacji wylicza na podstawie otrzymanych parametrów obiektu nastawy regulatorów P, PI, PID, które w pętli regulacji ze zidentyfikowanym obiektem powinny zapewnić przeregulowanie do 10% (regulacja aperiodyczna) lub tzw. tłumione przeregulowanie.

Rys. 7. Przebiegi na wyjściu obiektu w zamkniętej pętli regulacyjnej dla warunku z przeregulowaniem i bez przeregulowania.

Proponowane wartości dla P, I i D należy po odpowiednim przeliczeniu załadować do sterownika PLC i mamy gotowy układ regulacji automatycznej, który spełnia postawione mu wymagania (rysunek 7).

Zastosowanie produktu Standard PID w połączeniu ze sterownikami swobodnie programowalnymi rodziny S7 w znaczny sposób wspomaga praktyczny proces projektowania układów automatycznej regulacji. Proponowany proces identyfikacji z jednoczesną optymalizacją nastaw jest w stanie dość dokładnie odzwierciedlić właściwości fizyczne obiektu i zaproponować warunki pod jakimi cały układ będzie pracował stabilnie.

W gronie wszelkiego rodzaju programów wspomagających pracę inżynierów praktyków produkt ten znajduje swoje zasłużone miejsce na samym jego szczycie o czym może świadczyć jego prostota obsługi, możliwości konfiguracyjne oraz wyniki otrzymane po przeanalizowaniu opisanego przykładu.

mgr inż. Artur Król, Eur Ing <u>akrol0@poczta.onet.pl</u>

mgr inż. Joanna Moczko-Król, Eur Ing <u>j_mk@poczta.onet.pl</u>